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Abstract—Generative Adversarial Networks (GAN) serve as

an important position of the data generation models, providing

possibility for generating nonexistent images, style transfer, back-

ground masking, alternative faces, etc. However, the generated

images are becoming more and more realistic, which has raised

the concern of people’s privacy. In this paper, we implemented a

Deep Convolutional Generative Adversarial Network (DCGAN)

to show how to generate novel dog images from noise. We

improved the performance of the basic DCGAN by applying

different tricks, including adding noise to the training images,

excute input normalization and batch normalization, comparing

different activation functions, and using soft labels. The purpose

of all these tricks is to synchronize the learning process between

generator and discriminator as well as introduce stochasticity.

The performance evaluation is based on Memorization-informed

Frechet Inception Distance (MiFID) and results show that the

MiFID value of our model reached outstanding performance,

which is 95.85.

Keywords—Generative Adversarial Networks, privacy, Deep Con-
volutional Generative Adversarial Network, Memorization-informed
Frechet Inception Distance

I. INTRODUCTION AND RELATED WORK

With the rapid development of artificial intelligence, many
popular applications have been developed, e.g., background
masking [1], color palette completion [2], parameter optimiza-
tion for power grid system [3], interactive anime [4], etc.
Among them, Generative Adversarial Net (GAN) [5] is a very
popular technique that have great potential in simulating data
distributions and make computers creative.

Past few years witnessed the rapid development of GAN,
and showed that GAN have achieved great success at gen-
erating realistic and sharp looking images. There are two
main components of GAN: a generator that used to create

the fake images and a discriminator which is used to identify
whether the images are from the dataset or generated. There
are a series of different models of GAN such as Conditional
Generative Adversarial Nets (CGAN) [6], Deep Convolutional
GAN (DCGAN) [7], Cycle-Consistent Adversarial Networks
(CycleGAN) [8], etc.

Inspired by exploring more intriguing applications, we focus
on generating images of dogs that never existed before by de-
signing a symmetric DCGAN. DCGAN is an extension of the
GAN architecture: instead of using fully-connected layers, it
applies convolutional layers [9] in the discriminator to extract
the feature map, and uses convolutional-transpose layers in the
generator. In this paper, we aim to improve the quality of the
generated dog images and make them more realistic looking.
In order to achieve our goal, various techniques are applied
during train process, such as tuning hyper-parameters, adding
noise to the input images, using soft and noisy label, etc.
We use the Memorization-informed Frechet Inception Distance
(MiFID) [10] to evaluate our performance.

Such technology that can be used to generate fake images
can also be used for malicious purposes, which raise people’s
concern of their privacy, and many companies have to research
new technologies to identify fake content [11]. However, on
the other hand, GAN can also be used to protect people’s
privacy. Wu et al. proposed a Privacy Protective GAN that
could generate a identity of a face to do face de-identification
[12]; with this technology, people who have to supply their
personal face information could submit the identity directly,
instead of sharing their real face information. In this case,
applications could be developed to block out the information
that people do not want to share.
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Fig. 1. Image samples before data cleaning

The rest of the paper is arranged as follows. The dataset,
data pre-processing methods and the evaluation metrics are
described in Section Dataset. We then introduce our model
structure and the tricks we applied during the train process in
Section Methodology. Section Results shows the experiment
results of our model. We finally make conclusions and future
work.

II. DATASET AND EVALUATION METRICS

In this section, we describe the dataset we use and how we
process the data; then we show how we assess the performance
by introducing the evaluation metrics.

A. Dataset and Data-preprocessing

The dataset we use is Stanford Dogs dataset [13]. The
dataset contains 20580 dog images, with annotations of class
labels and bounding boxes, i.e., which breed is the dog and its
precise location coordinates in the images. Most areas of the
images are dogs, however, different images have different per-
spective to the dogs, and the images also contain background
noises such as people, nature scenes and objects, as shown in
Fig. 1.

In our project, we regard the dogs all of the same category
and do not distinguish the breeds of them. In order to provide
data consistency, we perform data cleaning for the dataset,
including cropping operation based on the bounding boxes
annotations and discarding low-quality images. More specif-
ically, the images do not maintain a 1 : 1 aspect ratio after
the crop operation, so we need to resize the images before
they are fed to the neural networks since neural networks
require a certain size input. However, the image geometric
transformation will cause loss of information or distortion of
the features, especially for images with large aspect ratio.
Under this condition, we performed a further filter for the
input data. In our case, we drop images that aspect ratio
is larger than 1.25 or smaller than 0.8 after cropping, and
resize them to the shape of (64, 64). After the data cleaning

Fig. 2. Image samples after data cleaning

process, we obtained a subset of the Stanford Dogs dataset
with 9070 images that are used as training data, and Fig. 2
shows some samples of the cleaned dataset. We further applied
data augmentation stage including ”RandomResizedCrop” and
”RandomHorizontalFlip” [14].

B. Evaluation Metrics

To evaluate the performance of our model, we use the
Memorization-informed Frechet Inception Distance (MiFID)
[10], which is modified from Frechet Inception Distance (FID)
[15], to measure the distance between images from the dataset
and our generations.

The FID score uses the inception v3 model [16]. Specifi-
cally, the feature extractor of the inception v3 model is used
to extract the feature map of the input image [17]. Then we
introduce a multivariate Gaussian distribution. The mean µ and
covariance ⌃ of the distribution which we introduced are used
to model the data distribution for the features extracted from
an the inception v3 network across both real and generated
images. The distance between these two distributions is then
calculated using the Frechet distance [18].

The mathematic equation for the FID is:

FID = kµr � µsk2 + Tr
⇣
⌃r + ⌃g � 2

p
⌃r⌃g

⌘
(1)

where Tr represents the trace; r is the real images and the
generated images is g; µr, ⌃r and µg , ⌃g are the mean value
and covariance of the multivariate Gaussian distribution for
real and generated images respectively.

However, one drawback of FID is that it does not con-
sider the overfitting situation, e.g., if the images generated
are quietly similar to the input dataset, as the result, the
FID must be very small, but at this time the network only
remembers the training dataset instead of creating the images.
In addition to FID, Kaggle [10] use MiFID to avoid overfit.
The memorization distance is defined as shown in (2).

di,j = 1� cos(fgi, frj) = 1� fgi · frj
|fgi||frj |

(2)
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where fg is the feature space of the generated data; fr is the
feature map of the data collection from the real world; fgi and
frj are the ith and jth vectors of fg and fr, respectively.

Then we take a certain generated image (i), and find the
minimum distance between it and all images (j). Finally we
take the averaged, as shown in (3).

d =
1

N

X

i

min
j

di,j (3)

where N represent the number of generated images.
This distance d is thresholded using a pre-defined epsilon ✏,

and it will be one if the distance exceeds a value we designed
before, i.e.,

dthr =

(
d, if d < ✏

1, otherwise
(4)

and finally, MiFID is defined as

MiFID = FID · 1

dthr
(5)

where dthr is the memorization distance threshold. Same to
FID, A smaller MiFID value means that a better image was
generated [10]. The overall evaluation process is shown in Fig.
3.

III. METHODOLOGY

In this section, we firstly demonstrate the loss function
and the model architecture of our DCGAN, then describe the
training methods we use in detail.

A. Model Architecture

Generative Adversarial Network (GAN) [19] is widely used
in generating images that never existed in real world. It
contains two essential components: a generator and a discrim-
inator. The technology works by learning the distributions of
a specific type of data and creating new data of the same type
from a so-called latent space, which is noisy. Fig. 4 shows
the structure of GAN. The input of the generator is noise,
also known as the latent space, and the generator will take
these noise to generate fake dog images. Along with real-world
images, these fake images will be fed into the discriminator,
which is a binary classification model that tries to classify fake
data from real images. Finally, the output of the discriminator
will be used to calculate the loss. The loss we used is Binary
Cross-Entropy (BCE) [20], defined by:

BCE = � 1

N

NX

i=1

yi · log [p (yi)] + (1� yi) · log [1� p (yi)]

(6)
where N is the number of images that are trained in one batch,
yi, and p(yi) are the ground truth and predicted values for ith

image.
The entire process is a minimax problem where generator

and discriminator play against each other. The goal of dis-
criminator is to perfectly distinguish which images are fake
ones and which are real, i.e., to minimize the loss function;
while the goal of generator is to make the generated images

Fig. 3. Image samples after data cleaning

more like the real images, so that the discriminator cannot
distinguish which are the fake images, which will increase the
loss function. Substitute discriminator and generator into (6),
then we optimize the following equation:

min
D

max
G

L(D,G) = BCE(x) +BCE(G(z))

= � 1

N

NX

i=1

logD(x) + log(1�D(G(z)))
(7)

where x and G(z) represent the real and fake images, D(x)
represents the probability that x is from the real dataset while
D(G(z)) is the probability that the discriminator regards the
images generated by generator are real.

The discriminator and the generator are trained alternately,
i.e., training the discriminator first, then training the generator,
and reciprocating continuously. Specifically, the generator will
generate images and feed them to the discriminator together
with the real data, then update the parameters in the dis-
criminator. Then use the updated discriminator to recalculate
the loss function, and update the trainable parameters in the
generator. In the next epoch of training, use the updated
generator to regenerate the images and repeat the above steps.
In the whole process, the generator is trying to generate more
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Fig. 4. Structure of GAN

real images, and at the mean time, the discriminator is striving
to classify which images are fakes ones. The generator and
the discriminator are competing each other, and finally the
two networks will reach a balanced point, i.e., the generated
image by the generator is very like the real image, and the
discriminator cannot find the real and fake images.

A DCGAN is a direct extension of the GAN [9]. As shown
in Fig. 5, the discriminator is comprised of convolution layers
and the generator is comprised of convolutional-transpose
layers.

A very important issue of DCGAN is how to balance the
learning capabilities of the generator and the discriminator.
As the main function of the discriminator is to provide a
descending gradient for the generator, so if the discriminator
is too bad, it cannot provide a valid gradient, while if we train
the discriminator too good, the gradient disappears. Therefore,
the discriminator and generator need to compete on the same
level, that is, the ability of the discriminator cannot be much
better or worse than the generator. To resolve the above
issue, we develop a symmetric architecture for generator and
discriminator, as shown in Fig. 5. For convolutional neural
networks, it is common known that the deeper the learning
ability. Therefore, we balance the learning ability between
generator and discriminator by letting them have the same
depth of the convolutional neural networks, as well as the size
of the convolutional kernel.

B. Training Methods

GAN is hard to be trained as decribed in [21] :
• Non-convergence: it is hard to make the generator and

discriminator converge at the same time. Simultaneous
gradient descent for both models makes them converge
but not both of them reach the optimal convergence
at the same time, which may make one model (e.g.,
discriminator) much stronger/weaker than the other (e.g.,
generator).

• Mode collapse: the generator makes different images
contain the same features such as the color, or different
images contain different parts of the same dog.

• Diminished gradient: if the discriminator gets too suc-
cessful, then the gradient of the generator is hard to be
updated, therefore the generator learns nothing.

Fig. 5. Generator and Discriminator Architecture of DCGAN

In order to train our DCGAN stably and effectively,
exquisite training methods need to be designed. In our project,
in order to balance the performance and the learning progress
as well as make the training process much smoother, following
techniques are applied.

1) Input Normalization: The values of all input images are
normalized between �1 and 1 , and we use the hyperbolic
tangent (Tanh) [22] the last layer of the generator so that
the value will between �1 to 1, which is consistent with the
interval range of the original image.

2) Add Noise to Input Images: Arjovsky et al. [23] pro-
posed that adding noise to input images and decay during
the training process could help. In our experiment, we add
Gaussian noise with mean = 0 and variance = 0.01 to the
input image, as experience shows the discriminator is easier
to be train compared with the generator.

3) Data Augmentation: Data augmentation is considered as
a basic and simple method that direct to the improvement of
model performance. We applied RandomResizedCrop [14] to
crop the given images to (0.8, 1.0) of the original size and
a random aspect ratio between (3/4to4/3) of the original
aspect ratio, then resize the images to (64, 64). RandomHori-
zontalFlip [14] is also applied.

4) Batch Normalization: Batch normalization (BN) [24]
is also used to construct different mini-batches for real and
generated images. This means each mini-batch should only
include either a pure real image or a pure generated image.
The idea of BN is to normalize the input of the current layer,
making the mean input 0 and the variance 1. The advantage
of using BN is to accelerate the convergence process, and the
convolutional neural network added by BN is not significantly
affected by the weight initialization, which increase its stability
and robustness, and has a good effect on improving the
convolution performance.
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TABLE I
HYPER-PARAMETERS SETTING

learning rate (generator & discriminator) 0.0005
betas (parameter of Adam [26]) (0.5, 0.999)
batch size 32
length of latent space 128
epochs 750

5) Avoid Sparse Gradient: The stability of DCGAN will
be greatly affected by the introduction of sparse gradients.
Therefore, we use convolutional layer with stride to perform
downsample and onvolutional-transpose layer with stride to
implement upsample. LeakyReLU is also used in both the
generator and the discriminator. By doing such operation, this
will enable the process of training is smooth, which helps
balance the learning progress between the generator and the
discriminator.

6) Use soft label: The soft and noisy labels are used to
smooth the training process. For the label smoothing, instead
of setting the target labels as real = 1 and fake = 0,
we label the incoming real sample with 0.8. However, for
each incoming sample of fake images, we still keep the label
fake = 0.

7) Adam Optimizer: Adam optimizer is regarded as a
efficient and effective optimizer for the training process [25].It
is very popular in the field of deep learning because it can
achieve excellent results quickly.

IV. EXPERIMENTS AND RESULTS

We train 750 epochs with the techniques applied as dis-
cussed in section III. Other settings of hyper-parameters
are shown in Table I. The input data for the genera-
tor is a 128 dimension random Gaussian noise. The code
is available at https://www.kaggle.com/leonshangguan/dcgan-
data-cleaning-sub-v1?scriptVersionId=18470145.

Fig. 7 demonstrates the validation MiFID during the
training process, and we finally achieved MiFID = 95.85
in the test dataset and 38.70 in the validation dataset. Fig. 6
shows the generated dog images using our DCGAN. As it can
be seen, it is difficult to distinguish whether they are generated
fake dogs or real dogs, which indicates a good performance.

V. CONCLUSION AND FUTURE WORK

This paper illustrates the modified model of Generative
Adversarial Nets (GAN) to generate dog images that are never
created before. The modified symmetric Deep Convolutional
GAN (DCGAN) architecture is used and various tricks during
training process are applied in order to balanced the learning
ability between the generator and the discriminator. The final
MiFID of our model reaches 95.85 in the testing phase
and 38.70 in the validation phase, which indicates a good
performance so that the images generated are likely to be
detected as real images.

We consider three aspects in our future work: i) In order
to make comparisons, other GAN structures are worth to try,
e.g., Cycle-Consistent Adversarial Networks (CycleGAN). ii)

Fig. 6. Generated Dog Images using DCGAN

Fig. 7. Validation MiFID during Training Process

As the application of generate images also create privacy
concerns, more specific, complete, and detailed laws and
policies are needed, and this is a significant ethical concern for
the Universal Village [27]. iii) The technology can also be used
to protect people’s privacy as described in [12]. For example,
the online dating applications probably can help chatters who
do not want to disclose personal face information to make a
fake face that still contain chatters’ facial characters, which
could protect the chatter’s privacy, but still make an intuitive
impression between the chatters.
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